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Synopsis

The interaction between flow and orientation of liquid crystalline polymers~LCPs! creates
remarkable heterogeneous patterns in which defects, or singular solutions, serve to mediate a
confluence of ordered nematic phases. The origin of defects remains a mystery. It is therefore
valuable to have models for LCP flows that provide some evidence of defects, and of the
corresponding physical competition between flow and LCP properties. In this direction, the
flow-orientation moment-averaged Doi model is studied with an imposed elongational flow.
Nonhomogeneous, biaxial nematic patterns are discovered in both axial and planar elongation.
These exact solutions consist of spatially varying directors in the plane orthogonal to the flow axis,
coupled with homogeneous biaxial order parameter equilibria fixed by the LCP concentration (N)
and elongation rate~n!. For each (N,n), the following patterns coexist all with identical order
parameter values: the homogeneous patterns of Rey@Macromol. Theory Simul.4, 857–872~1995!#;
radially symmetric director patterns; and finally, director patterns periodic in the cylindrical
azimuthal angle. The nonhomogeneous structures are distinguished by the presence of core defects
along the axis of flow symmetry, characterized by a logarithmic pressure singularity at the core.
© 1999 The Society of Rheology.@S0148-6055~99!01506-0#

I. INTRODUCTION

The moment-averaged Doi theory with a short-range elastic potential provides a good
model for analyzing local homogeneous patterns and phase transitions, in which the
averaged molecular orientation is characterized through an orientation tensor~a second
order, symmetric, traceless tensor! @Doi ~1980!, ~1981!#. From this theory, Seeet al.
~1990!, Hu and Ryskin~1991; 1992!, Sonnetet al. ~1995!, Bhaveet al. ~1993! studied
flow-induced phase transitions for spatially homogeneous uniaxial equilibria in shear
and/or elongation. Khokhlov and Semenov~1982! used a similar theory with the Onsager
potential. In a seminal paper Rey~1995! discovered spatially homogeneous biaxial pat-
terns in elongational flows and discussed their bifurcation behavior in terms of the two
order parameters of the orientation tensorQ. This analysis assumes a fixed set of direc-
tors, with one director aligned with the flow axis of symmetry.

Here we seek spatially nonhomogeneous patterns in elongational flow. To do so, we
recast the Doi model in cylindrical coordinates. This allows us to identify a class of
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solutions with the identical order parameter values as in Rey~1995!, with one director
again aligned with the flow axis, but where the remaining director angle in the plane
orthogonal to the flow axis is allowed to vary as a function of the azimuthal angle. For
homogeneous orientation tensors with simple elongational flow, the momentum equation
is satisfied automatically. However,nonhomogeneous structuresfeed back to the momen-
tum balance through gradients of the orientation tensorQ. We show conservation of
momentum can be maintained by discrete choices for the director angle as a function of
the cylindrical polar coordinate. These nonhomogeneous patterns suffer a logarithmic
singularity in pressure along the flow axis of symmetry, and therefore constitute exact
solutions of the Doi flow-orientation model with a core defect. The potential role of these
defect structures in physical experiments is yet to be determined.

II. THE CONSTRUCTION OF NONHOMOGENEOUS DIRECTOR PATTERNS

We begin with a brief review of the moment-averaged~approximate! Doi theory with
short range Maier–Saupe potential formulated by Bhaveet al. ~1993!, in which flows are
treated as incompressible,“–v 5 0. The balance of momentum, constitutive equation for
the extra stress, and nematodynamic equation involve the orientation tensor, defined by

Q 5 ^m^ m&2I /3, ~1!

wherem is a unit vector in the liquid crystal polymer~LCP! molecular direction, and the
averagê (d)& is with respect to a molecular probability density function consistent with
rigid rod molecules. The model equations are given by Bhaveet al. ~1993!

r
d

dt
v 5 “•~2pI1t!, ~2a!

t 5 2hD13ckT@F~Q!12l~“v:Q!~Q1I /3!#, ~2b!

d

dt
Q2~“v•Q1Q•“vT! 5

2

3
D22~“v:Q!~Q1I /3!2

1

l
F~Q!, ~2c!

F~Q! 5 ~12N/3!Q2N~Q•Q!1N~Q:Q!~Q1I /3!, ~2d!

where r is the density of the polymeric liquid,v is the velocity,t is the extra stress
tensor,d/dt denotes the material derivative,D 5 1

2@“v1“vT# is the rate-of-strain ten-
sor, p is the pressure,h is the solvent viscosity,l is the relaxation time associated with
rotation of the dumbbell molecules,c is the number of polymer molecules per unit
volume,N is the dimensionless polymer concentration which measures the strength of the
intermolecular short-range Maier–Saupe potential,k is the Boltzmann constant, andT is
absolute temperature. In this study, external forces are ignored.

We note that the general orientation tensorQ, defined by Eq.~1!, is a symmetric,
traceless, rank two tensor. This means that once coordinates are specified,Q is repre-
sented as a symmetric, traceless, 333 matrix with five independent components in gen-
eral.

We are interested in orientation structures that exist in response to an imposed simple
elongational velocity field:
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v 5 nS 2
x

2
,2

y

2
,zD , ~3!

with gradient

“v 5 n diag~21
2,2

1
2,1!, ~4!

in rectangular coordinates (x,y,z) with respect to the basis (ex ,ey ,ez). For n . 0, the
flow stretches along thez axis, called axial or unidirectional elongation; forn , 0, the
flow stretches radially in the entire plane orthogonal to thez axis, called planar or
bidirectional elongation. With this imposed flow, the Doi model, Eq.~2!, admits exact
uniaxial and biaxial homogeneous steady patterns with the eigenvectors ofQ aligned
with the coordinate basis@Rey ~1995!#. We remark further that these steady patterns are
invariant under arbitrary rotation of the directors in the plane transverse to the flow axis
of symmetry (ez). That is,VzQ0Vz

T is a steady pattern providedQ0 is, where

Vz 5 S cosz sinz 0

2sinz cosz 0

0 0 1
D, z arbitrary. ~5!

All of these homogeneous steady statesQ0 have one director parallel to the flow axisez .
This construction prompts us to seek nonhomogeneous solutions of the Doi model ex-
hibiting radial symmetry in the plane transverse to the flow direction.

To do so, we first cast the Doi model, Eq.~2!, in cylindrical coordinates (r ,u,z), with
the z axis coincident with the flow direction. The flow field, Eq.~3!, takes the form

v 5 nS 2
r

2
,0,zD , ~6!

with gradient

“v 5 n diag~2 1
2,2

1
2,1!, ~7!

in cylindrical coordinates (r ,u,z) with respect to the basis (er ,eu ,ez). Note the velocity
gradient“v is identical in both coordinate systems. A critical issue in this study is the
consistency of the momentum balance, Eq.~2a!, which for homogeneousQ is trivially
satisfied because the orientation contribution to stress is constant in space. However, for
nonhomogeneous orientation structures, the momentum equation~2a! with v given by
Eqs.~3! or ~6! translates into a tensorial partial differential equation coupling pressurep
and orientation tensorQ.

We now construct a special class of solutions of the coupled flow-nematic equations
with orientation tensorQ of the form

Q 5 VzFsS ez^ ez2
I

3D 1bS er ^ er2
I

3D GVz
T 5 sS n3^ n32

I

3D 1bS n2^ n22
I

3D ,

~8!

with the following properties:
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~i! one director (n3 5 Vzez 5 ez) is fixed parallel to the flow axis of symmetry;
~ii ! the remaining two orthogonal directors~eigenvectors! of Q lie in the plane per-

pendicular toez , and vary in space and time through the single director anglez
5 z(u,t); this is made explicit by the relations

n2 5 Vzer , n1 5 Vzeu ; ~9!

~iii ! the two independent order parameterss 5 s(t), b 5 b(t), do not vary in space.
Note steady states constructed below from this form ofQ will have uniform degrees of

orientation at each location, but with spatial nonhomogeneity through variation of the
directors~principal axis of orientation!.

Since“v is a diagonal constant matrix, the nematodynamic equation~2c! collapses to
a tensorial ordinary differential equation in time, where the spatial coordinateu enters
parametrically,if the convective transport term vanishes,

~v–“!Q 5 nS 2
r

2

]

]r
1z

]

]zD Q 5 0. ~10!

The special form ofQ, Eqs.~8!–~9!, is posited precisely to satisfy this condition. Thus,
the nematodynamic equation~2c! becomes an ordinary differential equation for the class
of Q defined by Eqs.~8!–~9!

5
Q̇ 5 2

1

l
F~Q!1G~Q;“v!,

G~Q;D! 5 DQ1QD1
2

3
D22D:QS Q1

I

3D ,

D 5 n diag~21/2,21/2,1!.

~11!

At this point, we have the time dependence of the order parameterss, b and director
anglez governed by the nematic dynamics, Eq.~11!, coupled with the momentum equa-
tion ~2a! governing the pressurep. We now analyze the constraints imposed by~2a!,
which in component form yields

1

4
r n2r 5 2p,r1trr ,r1

1

r
~trr2tuu1tru,u!1trz,z, ~12a!

0 5 2
1

r
p,u1

1

r2 ~r2 tru!,r1
1

r
tuu,u1tuz,z, ~12b!

rn2z 5 2p,z1
1

r
~rtrz!,r1tzz,z1

1

r
tuz,u , ~12c!

where the notation (),a denotes partial derivative with respect toa. The extra stress
components follow from the Doi constitutive relation~2b! and the special form ofQ, Eqs.
~8!–~9!:
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trr 5 2hn13ckTF2 U~s!

3
1

U~b!

6
1

Nsb

9
~3s23b21!G13ckTlnS2s

3
2

2s2

3

1
2sb

3
2

b2

6
2

b

3D1H3ckTFU~b!1
2Nsb

3
~11s2b!G1aln~2sb2b2!J cos 2z

2
,

~13a!

tuu 5 2hn13ckTF2 U~s!

3
1

U~b!

6
1

Nsb

9
~3s23b21!G13ckTlnS2s

3
2

2s2

3

1
2sb

3
2

b2

6
2

b

3D2H3ckTFU~b!1
2Nsb

3
~11s2b!G13ckTln~2sb2b2!J cos 2z

2
,

~13b!

tzz 5 2~trr1tuu!1ln3ckT~2s2b!, ~13c!

tru 5 3ckTHU~b!1
2Nsb

3
~11s2b!1ln~2sb2b2!J sin 2z

2
, ~13d!

trz 5 0, tuz 5 0,

where

U~s! 5 sF12
N

3
~12s!~2s11!G ~14!

gives the uniaxial bulk free energy*U(s)ds.
Note that

trr2tuu1tru,u 5 3ckTFU~b!1
2Nsb

3
~11s2b!1l n~2sb2b2!G cos~2z!~11z,u!,

~15!
trr ,r 5 0.

The radial momentum balance, Eq.~12a! yields

p,r 5 2
r

4
n2 r1

3ckT

r
f~s,b! cos~2z! ~11z,u!, ~16!

where

f~s,b! 5 U~b!1
2N

3
sb~11s2b!1ln~2sb2b2!. ~17!

Thus the pressure has a potential ln(r) singularity along the axis of flow symmetry,
r 5 0.

First we pursue elimination of the ln(r) singularity in pressure, which requires one of
the following conditions to be satisfied:

f~s,b! 5 0, ~18!

11z,u 5 0, ~19!
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cos 2z 5 0. ~20!

The first condition, Eq.~18!, forcesb 5 0, a uniaxial limit in whichQ collapses to a
spatially homogeneous forms(t)@ez^ ez2 (I /3)#. The second condition, Eq.~19! implies
z 5 2u1z0(t), which recovers the spatially homogeneousform of Q employed by
Rey ~1995!. Further analysis of the momentum equation yields a finite pressure field
everywhere:

p 5 2
1

8
rn2 r22

r

2
n2z21p̄~t!. ~21!

The final choice, Eq.~20!, yieldsdiscreteradially symmetric patterns, withz 5 p/4 mod
p/2, where the pressure is given by

p 5 2
1

8
rn2 r22

r

2
n2z21p̄~t!12truu. ~22!

However, this pressure is multiple valued and therefore physically ill-defined unlesst ru
vanishes. From Eq.~13d! we imposet ru 5 0, which givesz 5 0 modp/2, in contra-
diction to the previous conditionz 5 p/4 modp/2.

In summary, elimination of the lnr pressure singularity leads only to previously iden-
tified spatially homogeneous patterns@Rey ~1995!#.

Next we explore exact solutions that allow the ln(r) pressure singularity. We begin by
integrating the angular momentum equation~12b!, which has ill-defined termsunlessthe
following conditions are met:

E
0

2p
sin 2z~u!du 5 0, cos 2z~u12p! 5 cos 2z~u!. ~23!

We then integrate the radial momentum equation and find that an ill-defined term appears
unless

cos 2z~u12p!@11z,u~u12p!# 5 cos 2z~u!@11z,u~u!#. ~24!

Finally integrating the axial momentum equation yields

p 5 2
1

8
rn2r22

r

2
n2z21ln~r!3ckTf~s,b!cos 2z~u!~11z,u!13ckTf~s,b!E

0

u
sin 2z~u!du

1tuu2tuu~u 5 0!1p̄~t!. ~25!

We do not yet have a complete classification of all functionsz(u) which satisfy the
relations, Eqs.~23!–~24!. Nonetheless, our construction yields successful exact patterns if
we can produce any such functions. Indeed, the following discrete family of functions
z(u) satisfies Eqs.~23! and ~24!:

z~u! 5 nu1z0, n 5 61,62, . . . , ~26!

z0 constant

or

z 5 0 mod
p

2
. ~27!
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The patterns for givenn ~exceptn 5 21) in Eq. ~26! have periodp/(n11) radians in
the r 2u plane.

With the momentum equation balanced, with pressurep given by Eq.~25!, z given by
Eqs.~26! or ~27!, v prescribed by Eq.~6!, the remaining order parameter unknownss(t),
b(t) are given by the ode Eq.~11! which collapses to that studied by Rey~1995!. Thus
all biaxial order parameter steady states, performed in the completely different context of
homogeneous elongation-induced patterns, further define nonhomogeneous biaxial pat-
terns by the above construction. The existence of biaxial patterns varies with the LCP
concentration parameterN and the productln of polymer relaxation timel and elonga-
tion raten, the so-called Peclet number~Pe!.

In summary, we have constructed a discrete family of exact steady orientation patterns
with a lnr pressure singularity~except forn 5 21; see below! that we call a core defect.
The Q tensor is constructed from the biaxial equilibria (s,b) vs N,Pe from Rey~1995!.

FIG. 1. Biaxial steady orientation patterns in the plane transverse to the axis of flow symmetry. The dimen-
sionless concentrationN 5 4, whereas the planar elongational rate relative to polymer relaxation time isln
5 20.1. All patterns correspond to core defects with a ln(r) pressure singularity atr 5 0. In ~a! the degree of

orientation variables with respect to the two in-plane directorsn2 5 eu , n1 5 er , are d2 5 8.802, d1
5 0.104, respectively, wheren2 is the major director. In~b!, d1 5 0.802,d2 5 0.104 and the major director

is n1 . These two orientation patterns are related by a 90° in-plane rotation.~c! Is a blow up of the orientation
tensor represented by an ellipsoid.
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The steady state values (s,b) for given (N,Pe) determine the direction cosinesdi

5 ^ cos2 fi & @Forestet al. ~1997!#,

d1 5 ~12s2b!/3, d2 5 ~12s12b!/3, d3 5 12d12d2 , ~28!

where^ & is with respect to the probability distribution function of the Doi theory,f i is
the angle between the rod-like molecule axism and directorni . We use this order
parameter and director information to construct the local orientation at each spatial loca-
tion in the form of an ellipsoid@see Fig. 1~c!# with major axesni and semiaxis lengths
di . Since all patterns constructed here haven3 5 ez , all information except the semiaxis
length d3 is conveyed by the two dimensional projection of these ellipsoids onto the
plane transverse to the flow axis of symmetry.

We now describe specific members of this family.
For n 5 21, the lnr singularity vanishes and the spatially homogeneous form ofQ

@Rey ~1995!# is recovered.@While not necessarily obvious, if the director anglez

FIG. 2. Nonhomogeneous biaxial patterns for Pe5 20.1, N 5 4.
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5 2u1z0, the directorsn1 , n2 in Eq. ~9! become a constant rotation byz0 of ex , ey .
Thus the tensorQ becomes spatially homogeneous.#

For all othern Þ 21, the lnr pressure singularity persists.
The special casez 5 0 modp/2 yields two discreteradially symmetricorientation

patterns with a core defect. The radial symmetry occurs because the directors are locked
with the coordinate vectors. Figure 1 depicts two biaxial patterns forz 5 0 andp/2,
respectively, for a given Pe´clet number (Pe5 nl 5 20.1) and concentration parameter
N 5 4.

Figure 2 gives nonhomogeneous biaxial patterns forn 5 1,2,3,4, respectively, with
N 5 4, Pe5 20.1 as in Fig. 1.

Figure 3 illustrates the change of the local degrees of orientation,di , by variation of
the concentration parameterN, for fixed Pe. By fixingn 5 2, the spatial variation of the
local orientation ellipsoid is identical for each figure, so only the local ellipsoid shape
varies. The correspondinghomogeneouspatterns for these same (N,Pe), with these iden-
tical steady order parameter values~therefore the same semiaxesdi !, and with arbitrary
directionn1 , n2 in the r 2u plane, areneutrally stable.

III. CONCLUSION

In the study of spatially homogeneous orientation patterns in response to pure elon-
gational flow, the momentum equation of the Doi theory is trivially satisfied. If one
considers nonhomogeneous patterns with prescribed pure elongation, then the momentum
balance yields constraints on the remaining unknowns: the pressure and the orientation
tensor. Here we have constructed special orientation structures which in the simplest case
recover the spatially homogeneous, elongation-induced patterns of Rey~1995!, for which
the pressure is finite and well behaved. Further exact solutions of the full Doi
momentum-nematic equations are constructed which retain the equilibrium order param-
eter values of Rey’s homogeneous patterns, but embellish Rey’s constant directors by
admitting an azimuthal dependence of the directors in the plane orthogonal to the flow
axis of symmetry. The simplest of the nonhomogeneous structures yields two discrete,

FIG. 3. Nonhomogeneous patterns for different concentrations (N) where Pe5 20.1. The degrees of orien-
tation fix the semiaxes of lengthd1 5 0.104, d2 5 0.802, d3 5 0.094 in ~a!, and d1 5 0.0786, d2
5 0.8485, d3 5 0.0729 in ~b!. The spatial inhomogeneity is due to periodicity with respect to the angle

coordinate (u) in the plane transverse to the flow axis of symmetry.
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radially symmetric, biaxial director patterns that coexist with homogeneous biaxial pat-
terns at fixed values of LCP concentration and elongation rate. These exact constructions
are distinguished by the occurrence of a lnr singularity in the pressure, wherer is the
radial coordinate in the plane orthogonal to the flow axis. We call these patterns core
defects because of the combined director confluence and pressure singularity along the
core, or axis of flow symmetry. We recall from Rey~1995! that for bidirectional elon-
gation, above a moderate LCP concentration the only stable patterns are biaxial. Thus
these core defects inherit the stability to pure order parameter perturbations, that is, to
perturbations in the degrees of orientation. The more difficult and physically relevant
question of whether there exist patterns which approximate these nonhomogeneous struc-
tures, but with some regularization of the core singularity, remains open. Nonetheless, it
is remarkable that the Doi theory captures these exact solutions exhibiting core defects.

ACKNOWLEDGMENTS

This effort was sponsored by the Air Force Office of Scientific Research, Air Force
Materials Command, USAF, Grant Nos. F49620-96-1-0131, F49620-99-1-0003 and
F49620-97-1-0001. The US Government is authorized to reproduce and distribute re-
prints for governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Research or the US Government.
M.F.G. further acknowledges support from the National Science Foundation, Grant No.
DMS 9704549.

References

Bhave, A. V., R. K. Menon, R. C. Armstrong, and R. A. Brown, ‘‘A constitutive equation for liquid crystalline
polymer solutions,’’ J. Rheol.37, 413–441~1993!.

Doi, M., ‘‘Rheological properties of rodlike polymers in isotropic and liquid crystalline phases,’’ Ferroelectrics
30, 247–254~1980!.

Doi, M., ‘‘Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in
isotropic and liquid crystalline phases,’’ J. Polym. Sci., Polym. Phys. Ed.19, 229–243~1981!.

Forest, M. G., Q. Wang, and S. Bechtel, ‘‘One-dimensional isothermal spinning models for liquid crystalline
polymer fibers,’’ J. Rheol.41, 821–850~1997!.

Hu, T. and G. Ryskin, ‘‘Numerical simulation of rodlike polymers in a uniaxial extensional flow: The
distribution-function version versus the order-parameter version of Doi’s theory,’’ J. Chem. Phys.95,
6042–6049~1991!.

Hu, T. and G. Ryskin, ‘‘Numerical simulation of rodlike polymers in extensional and sink/source flows using
the order-parameter version of Doi’s theory,’’ J. Chem. Phys.96, 4705–4717~1992!.

Khokhlov, A. and A. Semenov, ‘‘Influence of external field on the liquid-crystalline ordering in solutions of
stiff-chain macromolecules,’’ Macromolecules15, 1272–1277~1982!.

Rey, A., ‘‘Bifurcational analysis of the isotropic-nematic phase transition of rigid rod polymers subjected to
biaxial stretching flow,’’ Macromol. Theory Simul.4, 857–872~1995!.

See, H., M. Doi, and R. G. Larson, ‘‘The effect of steady flow fields on the isotropic-nematic phase transition
of rigid rod-like polymers,’’ J. Chem. Phys.92, 792–800~1990!.

Sonnet, A, A. Kilian, and S. Hess, ‘‘Alignment tensor versus director: Description of defects in nematic liquid
crystals,’’ Phys. Rev. E52, 718–722~1995!.

1582 FOREST, WANG, AND ZHOU


